81 research outputs found

    Swinging Bridge - September 17, 2009

    Get PDF

    Swinging Bridge - November 19, 2009

    Get PDF

    Swinging Bridge - October 1, 2009

    Get PDF

    Swinging Bridge - November 5, 2009

    Get PDF

    Swinging Bridge - October 15, 2009

    Get PDF

    Modelling an energetic tidal strait:investigating implications of common numerical configuration choices

    Get PDF
    Representation of the marine environment is key for reliable coastal hydrodynamic models. This study investigates the implications of common depth-averaged model configuration choices in sufficiently characterising seabed geometry and roughness. In particular, applications requiring a high level of accuracy and/or exhibiting complex flow conditions may call for greater detail in marine environment representation than typically adopted in coastal models. Ramsey Sound, a macrotidal strait in Pembrokeshire, Wales, UK is considered as a case study. The site contains various steeply inclined bathymetric features, including a submerged pinnacle named Horse Rock and a rocky reef called “The Bitches”. The available energy in Ramsey Sound’s tidal currents has attracted attention from tidal energy developers. There is interest in accurately modelling the energetic hydrodynamics surrounding its pronounced bathymetry. The coastal flow solver Thetis is applied to simulate the flow conditions in Ramsey Sound. It is shown that notable prominent bathymetric features in the strait influence localised and, most importantly, regional hydrodynamic characteristics. “The Bitches” consistently accelerate flow in the strait while Horse Rock induces a notable wake structure and flow reversals. The model is calibrated against bed- and vessel-mounted Acoustic Doppler Current Profiler (ADCP) observations, by altering seabed roughness parameterisations. A spatially variable and locally scaled Manning coefficient based on diverse seabed classification observations is found to improve model performance in comparison to uniformly applied constants, the latter a more common approach. The local impact of altering the Manning coefficient configuration is found to be greatest during spring flood periods of high velocity currents. Meanwhile, the effect of coarsening the computational mesh around bathymetric features towards values more typically applied in coastal models is investigated. Results indicate severe misrepresentation of seabed geometry and subsequent wake hydrodynamics unless refined to a mesh element size that adequately represents Horse Rock and “The Bitches”

    Localized impacts and economic implications from high temperature disruption days under climate change

    Get PDF
    Most studies into the effects of climate change have headline results in the form of a global change in mean temperature. More useful for businesses and governments, however, are measures of the localized impact, and also of extremes rather than averages. We have addressed this by examining the change in frequency of exceeding a daily mean temperature threshold, defined as ‘disruption days’, as it is often this exceedance which has the most dramatic impacts on personal or economic behaviour. Our exceedance analysis tackles the resolution of climate change both geographically and temporally, the latter specifically to address the 5- to 20-year time horizon which can be recognized in business planning. We apply bias correction with quantile mapping to meteorological reanalysis data from ECMWF ERA5 and output from CMIP5 climate model simulations. By determining the daily frequency at which a mean temperature threshold is exceeded in this bias-corrected dataset, we can compare predicted and historic frequencies to estimate the change in the number of disruption days. Furthermore, by combining results from 18 different climate models, we can estimate the likelihood of more extreme events, taking into account model variations. This is useful for worst-case scenario planning. Taking the city of Chicago as an example, the expected frequency of years with 40 or more disruption days above the 25°C threshold rises by a factor of four for a time period centred on 2040, compared with a period centred on 2000. Alternately, looking at the change in the number of days at a given likelihood, an example is Shenzhen, where the number of disruption days in a once-per-decade event exceeding the 25°C or 30°C threshold is expected to rise by a factor of four. In a future stage, superimposing these results onto maps of, for instance, GDP sensitivity or production days lost, will provide more accurate and targeted conclusions for future impacts of climate change. This method of quantifying costs on business-relevant timescales will enable businesses and governments properly include risks associated with facilities, plan mitigating actions and make accurate provisions. It can also, for example, inform their disclosure of physical risks under the framework of the Task Force on Climate-related Financial Disclosures. This approach is equally applicable to other weather-related, localized phenomena likely to be impacted by climate change
    • 

    corecore